
Max Marks: 800 Date: 06.11.2022

ANKUR BATCH PHYSICS: REVISION TEST – 1 (SET A) Topic: Ray Optics + Circular Motion + Gravitation

1.	When light is refracted from a surface, which of its following physical parameters does not change?										
	(a)	Velocity	(b)	Amplitude	•	(c)	Frequenc	y	(d)	Wavele	ength
2.		cave mirror gives a			_	ge as its	s object p	laced at a	dista	nce of 20	cm from it.
	(a)	10 cm	(b)	15 cm		(c)	20 cm		(d)	30 cm	
3.		n stands symmetr gular room. The nu	•		Č	•	mirrors	fixed to	two	adjacent	walls of a
	(a)	4	(b)	3		(c)	2		(d)	6	
4.		cave mirror has a to where is the imag		· ·	cm. When	ı an obj	ject is pla	ced at a c	listan	ce of 15 c	m from the
	(a)	10 cm in front of	the mir	ror.		(b)	7.5 cm b	ehind the	mirro	or.	
	(c)	2.5 cm in front of	the mi	rror.		(d)	7.5 cm in	n front 0 f	the r	nirror	
5.	A ray of	of light is incident	t on a p	olane mirro	or at an ar	ngle of	60°. The	angle of	devia	ation produ	iced by the
	(a)	120°	(b)	30°		(c)	60°		(d)	90°	
6.	Consid	ler a ray of light t	ravellin	ig from a c	denser to	a rarer	medium.	If it is in	cider	nt at the cr	itical angle
	(a)	it will emerge out	t into th	e rarer me	dium						
	(b)	it will undergo to	tal inte	rnal reflect	ion						
	(c)	it will travel along	g the in	terface sep	arating th	e two r	nedia				
	(d)	it will retrace its p	path								

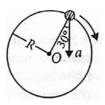
7. What is the refractive index of the material if the critical angle is 45°?

- (a) 0.414
- (b) 0.301
- (c) 0.101
- (d) 1.414
- 8. The image of an object in concave lens is formed at $\frac{f}{2}$, where f is the focal length of the lens. Find the distance of the object from the lens
 - (a) f
- (b) 2f
- (c) $\frac{f}{2}$
- (d) infinity
- 9. An object placed at a distance of 16 cm from a convex lens produces an image of magnification m (m>1). If the object is moved towards the lens by 8 cm then again an image of magnification m is obtained. The numerical value of the focal length of the lens is
 - (a) 12 cm
- (b) 14 cm
- (c) 18 cm
- (d) 20 cm
- 10. In an equilateral prism if incident angle is 45° then the angle of minimum deviation is
 - (a) 30°
- (b) 60°
- (c) 45°
- (d) 90°
- 11. A ray of light suffers minimum deviation in equilateral prism P. Additional prisms Q and R of identical shape and of same material as that of P are now combined as shown in figure. The ray will now suffer

(a) greater deviation

(b) no deviation

(c) same deviation as before


- (d) total internal reflection
- 12. Focal length of objective and eye piece of telescope are 200 cm and 4 cm respectively. What is the length of telescope for normal adjustment?
 - (a) 196 cm
- (b) 204 cm
- (c) 250 cm
- (d) 225 cm

13.	The magnifying	power	of a	convex	lens	of focal	length	10 cı	n when	the	image	is	formed	at	the	near
	point is															

- (a) 6
- (b) 5.5
- (c) 4
- (d) 3.5

- (a) 2m
- (b) 3m
- (c) $\frac{m}{2}$
- (d) 4m
- 15. In the given figure, $a = 15 \text{ m s}^{-2}$ represents the total acceleration of a particle moving in the clockwise direction in a circle of radius R = 2.5 m at a given instant of time. The speed of the particle is

- (a) 4.5 m s^{-1}
- (b) 5.0 m s^{-1}
- (c) 5.7 m s^{-1}
- (d) 6.2 m s^{-1}
- 16. A particle moves with a uniform speed v and time period T in a circular path of radius r. If the speed of the particle is doubled, its new time period is
 - (a) T
- (b) $\frac{T}{2}$
- (c) 2T
- (d) $\frac{T}{4}$
- 17. The radii of circular paths of two particles of same mass are in ratio 6 : 8 then what will be velocities ratio if they have a constant centripetal force?
 - (a) $\sqrt{3}:4$
- (b) $4:\sqrt{3}$
- (c) $2:\sqrt{3}$
- (d) $\sqrt{3}:2$
- 18. The ratio of angular speed of a second-hand to the hour-hand of a watch is
 - (a) 60:1
- (b) 72:1
- (c) 720:1
- (d) 3600:1
- 19. If the length of second's hand of a clock is 10 cm, the speed of its tip (in cm s⁻¹) is nearly
 - (a) 2
- (b) 0.5
- (c) 1.5
- (d) 1

20.

Uniform circular motion is an example of

	(a)	constant speed m	otion		(b)	constant velocity i	notion	
	(c)	non-accelerated	motion		(d)	zero accelerated m	otion	
21.	-	•		-	-			ntre at O. When the
	particl	e moves from a p	oint P to	O Q on the circle su	ch that	$\angle POQ = \theta$, then th	e magn	itude of the change
	in velo	ocity is						
	(a)	2v sin (2θ)	(b)	zero	(c)	$2v\sin\left(\frac{\theta}{2}\right)$	(d)	$2v\cos\left(\frac{\theta}{2}\right)$
22.	A part	icle moves in a ci	rcle of 1	radius 5 cm with co	nstant s	peed and time perio	od 0.2π	s. The acceleration
	of the	particle is						
	(a)	15 m/s^2	(b)	25 m/s^2	(c)	36 m/s^2	(d)	5 m/s^2
23.	A car	is moving along a	circula	ar road at speed of 2	20 m/s.	The radius of the c	ircular ı	road is 10 m. If the
	speed	is increased at the	rate of	30 m/s^2 , what is the	resulta	nt acceleration?		
	(a)	10 m/s^2	(b)	50 m/s^2	(c)	250 m/s^2	(d)	80 m/s^2
24.	-	ticle moves in a of e in m/s ² is	circle o	f radius 25 cm at	two rev	olutions per secon	d. The	acceleration of the
	(a)	π^2	(b)	$8\pi^2$	(c)	$4\pi^2$	(d)	$2\pi^2$
25.	A bod	y moving along a	a circula	ar path of radius r	with ve	elocity v, has centre	ipetal a	cceleration a. If its
	veloci	ty is made equal to	2v, the	en its centripetal acc	celeratio	on is		
	(a)	4a	(b)	2a	(c)	a/4	(d)	a/2
26.	For a p	particle moving in	vertica	l circle, the total end	ergy at o	lifferent positions a	long the	e path
	(a)	is conserved			(b)	increases		
	(c)	decrease			(d)	may increase or de	ecrease	
						_		

What is the minimum velocity with which a body of mass m must enter a vertical loop of radius R so 27. that it can complete the loop?

	<u> </u>	
(a)	./3oR	

(b)
$$\sqrt{5gR}$$

(c)
$$\sqrt{gR}$$

(d)
$$\sqrt{2gR}$$

(a)
$$\sqrt{2Rg}$$

(b)
$$\sqrt{2R/g}$$

(c)
$$\sqrt{R/g}$$

(d)
$$\sqrt{Rg}$$

A can filled with water is revolved in a vertical circle of radius 4 m and the water does not fall down. 29. The time of period of revolution will be

The velocity of a body moving in a vertical circle of radius r is $\sqrt{7gr}$ at the lowest point of the circle. 30. What is the ratio of maximum and minimum tension?

(b)
$$\sqrt{7}:1$$

- Kepler's second law is a consequence of 31.
 - conservation of energy (a)

- (b) conservation of linear momentum
- conservation of angular momentum (c)
- conservation of mass (d)
- 32. Average distance of the earth from the sun is L_1 . If one year of the earth = D days, one year of another planet whose average distance from the sun is L₂ will be

(a)
$$D\left(\frac{L_2}{L_1}\right)^{1/2}$$
 days

$$D\left(\frac{L_2}{L_1}\right)^{3/2} days$$

$$D\left(\frac{L_2}{L_1}\right)^{1/2} days \quad (b) \qquad D\left(\frac{L_2}{L_1}\right)^{3/2} days \quad (c) \qquad D\left(\frac{L_2}{L_1}\right)^{2/3} days \quad (d) \qquad D\left(\frac{L_2}{L_1}\right) days$$

(d)
$$D\left(\frac{L_2}{L_1}\right)$$
 days

- A small planet is revolving around a very massive star in a circular orbit of radius R with a period of 33. revolution T. If the gravitational force between the planet and the star were proportional to $R^{-5/2}$, then T would be proportional to
 - $R^{3/2}$ (a)
- $R^{3/5}$ (b)
- $R^{7/2}$ (c)
- R^{7/4} (d)

Three equal masses of 1 kg each are placed at the vertices of an equilateral triangle PQR and a mass of 2 34. kg is placed at the centroid O of the triangle which is at a distance of $\sqrt{2}$ m from each of the vertices of the triangle. The force, in newton, acting on the mass of 2 kg is

(a)

 $\sqrt{2}$ (b)

(d) Zero

35. If the mass of a body is M on the surface of the earth, the mass of the same body on the surface of the moon is

(a) M

(b) zero (c) $\frac{M}{6}$

(d) 6M

If earth suddenly shrinks by one-third of its present radius, the acceleration due to gravity will be 36.

(b) $\frac{3}{2}g$

(c) $\frac{4}{9}g$

(d) $\frac{9}{4}$ g

The depth d at which the value of acceleration due to gravity become $\frac{1}{n}$ times the value at the earth's 37. surface is (R = radius of earth)

 $d = R\left(\frac{n}{n-1}\right) \qquad (b) \qquad d = R\left(\frac{n-1}{2n}\right) \qquad (c) \qquad d = R\left(\frac{n-1}{n}\right) \qquad (d) \qquad d = R^2\left(\frac{n-1}{n}\right)$

The change in the gravitational potential energy when a body of mass m is raised to a height nR above 38. the surface of the earth is (here R is the radius of the earth)

 $\left(\frac{n}{n+1}\right)$ mgR (b) $\left(\frac{n}{n-1}\right)$ mgR (c) nmgR

(d) $\frac{\text{mgR}}{}$

39. The ratio of escape velocity at earth v_e to the escape velocity at a planet v_p whose radius and mean density are twice as that of earth is

(a) 1:4

 $1:\sqrt{2}$ (b)

1:2 (c)

(d) $1: 2\sqrt{2}$

A particle of mass m is kept at rest at a height 3R from the surface of earth, where R is radius of earth 40. and M is mass of earth. The minimum speed with which it should be projected, so that it does not return back, is (g is acceleration due to gravity on the surface of earth)

- $\left(\frac{\mathrm{GM}}{2\mathrm{R}}\right)^{1/2}$ (b) $\left(\frac{\mathrm{gR}}{4}\right)^{1/2}$ (c) $\left(\frac{2\mathrm{g}}{\mathrm{R}}\right)^{1/2}$
- (d) $\left(\frac{GM}{R}\right)^{1/2}$
- A satellite is orbiting the earth at a height of 5 R above that surface of the earth, R being the radius of the 41. earth. The time period of another satellite in hours at a height of 2R from the surface of the earth is
 - (a) 5
- 10 (b)
- $6\sqrt{2}$ (c)
- (d)
- The time period of a satellite of earth is 5 hours. If the separation between the earth and the satellite is 42. increased to 4 times the previous value, the new time period will become
 - 20 hours (a)
- (b) 40 hours
- 80 hours (c)
- (d) 5 hours
- 43. A satellite is orbiting around the earth at a height h above the earth's surface. If h is increased, the time period of satellite will
 - (a) decrease
- (b) increase
- (c) remain unaffected (d)
- become zero
- 44. The time period T of the moon of planet Mars (mass M_m) is related to its orbital radius R (G = Gravitational constant) as
 - (a)
- $T^{2} = \frac{4\pi^{2}R^{3}}{GM_{m}} \qquad (b) \qquad T^{2} = \frac{4\pi^{2}GR^{3}}{M_{m}} \qquad (c) \qquad T^{2} = \frac{2\pi R^{3}G}{M_{m}} \qquad (d) \qquad T^{2} = 4\pi M_{m}GR^{3}$
- A satellite is in an orbit around the earth. If its kinetic energy is doubled, then 45.
 - (a) it will maintain its path
 - it will fall on the earth (b)
 - it will rotate with a great speed (c)
 - (d) it will escape out of earth's gravitational field.

46. Which of the following relation is called mirror equation	46.	Which of the	following	relation is	s called	mirror ed	quation?
---	-----	--------------	-----------	-------------	----------	-----------	----------

(a)
$$\frac{u}{v} + \frac{f}{u} = \frac{1}{f}$$

$$\frac{u}{v} + \frac{f}{u} = \frac{1}{f}$$
 (b) $\frac{1}{v} + \frac{1}{u} = 1$

(c)
$$\frac{1}{f} + u = \frac{1}{v}$$

(d)
$$uf + vf = uv$$

- (a) 10 cm
- (b) 15 cm
- (c) 2.5 cm
- (d) 5 cm

- 4.4 cm (a)
- (b) 9 cm
- 8.8 cm (c)
- (d) 3.3 cm
- A mass M at rest is broken into two pieces having masses m and (M m). The two masses are then 49. separated by a distance r. The gravitational force between them will be the maximum when the ratio of the masses [m : (M - m)] of the two parts is
 - 1:1 (a)
- (b)
- 1:3 (c)
- (d) 1:4
- A spherical planet has a mass M_p and diameter D_p. A particle of mass m falling freely near the surface of 50. this planet will experience an acceleration due to gravity, equal to
 - (a)

Date: 06.11.2022

ANKUR BATCH CHEMISTRY: REVISION TEST-1 (SET A)

Topic: Mole Concept + Redox Reaction + Periodic Properties + S Block + Hydrogen

51.			-	o of water (20 drops=				
	(a)	6.023×10^{22}	(b)	1.338×10^{22}	(c)	6.023×10^{20}	(d)	7.338×10^{22}
52.	MnO	$^{-4} + SO_3^{-2} + H^+ \rightarrow N$	$Mn^{+2} + S$	$5O_4^{-2}$. The number of	H ⁺ ions	involved is		
	(a)	2	(b)	6	(c)	8	(d)	16
53.	The a	amount of energy re	eleased	when 10 ⁶ atoms of i	odine in	vapour state are con	verted to	o ions is $4.9 \times 10^{-13} \text{ J}.$
	What	is the electron affin	ity of io	odine in eV/atom?				
	(a)	2.0	(b)	2.5	(c)	3.06	(d)	2.75
54.	Whic	h of the following s	equence	regarding the first io	nization	potential of coinage	metal is	correct?
	(a)	Cu > Ag > Au	(b)	Cu < Ag < Au	(c)	Cu > Ag < Au	(d)	Ag > Cu < Au
55.	1.25	g of a solid dibasic	acid is c	completely neutralised	d by 25 1	ml of 0.25 molar Ba(OH) ₂ sol	ution. Molecular mass
	of the	e acid is						
	(a)	100	(b)	150	(c)	120	(d)	200
56.	Rearr	range the following	(I to IV	() in the order of inci	easing n	nasses and choose th	e correct	answer from (1), (2),
	(3) ar	nd (4) (Atomic mass	N = 14	4, O = 16, Cu = 63).				
	I.	1 molecule of ox	ygen		II.	1 atom of nitroger	ı	
	III.	$1 \times 10^{-10} \mathrm{g} \; \mathrm{molec}$	cular we	ight of oxygen	IV.	1×10^{-10} g atomic	weight o	of copper
	(a)	II < I < III < IV	(b)	IV < III < II < I	(c)	II < III < I < IV	(d)	III < IV < I < II
57.	The f	irst and second ioni	sation e	nthalpies of a metal a	are 496 a	and 4560 kJ mol ⁻¹ , re	spectivel	y. Hoe many moles of
	HCl a	and H ₂ SO ₄ , respective	vely, wil	ll be needed to react of	complete	ly with 1 mole of the	metal h	ydroxide?
	(a)	1 and 0.5	(b)	2 and 0.5	(c)	1 and 1	(d)	1 and 2
				Space for Ro	wah Wa	nrk		

58.	Total number of groups in Mendeleef's table										
	(a)	18	(b)	9	(c)	7	(d)	10			
59.	The t	altimate products	of oxidatio	on of most of hydro	gen and ca	rbon in food stuffs	are				
	(a)	H_2O_2 and CO			(b)	CH ₃ OH and CH	3COOH				
	(c)	H ₂ O and CO ₂			(d)	H ₂ and C					
60.	Whic	ch of the following	g ions has t	the smallest radius	?						
	(a)	Be^{2+}	(b)	$\mathrm{Li}^{\scriptscriptstyle +}$	(c)	O^{2-}	(d)	F-			
61.	In the	e reaction,									
	HAso	$O_2 + Sn^{2+} \rightarrow As +$	$Sn^{4+} + H_2$	O oxidizing agent i	S						
	(a)	Sn^{2+}	(b)	Sn^{4+}	(c)	As	(d)	$HAsO_2$			
62.	Two	oxides of a metal	contain 5	0% and 40% meta	l M respec	tively. If the formu	ıla of the f	first oxide is MO ₂ , the			
	form	ula of the second	oxide will	be							
	(a)	MO_2	(b)	MO_3	(c)	M_2O	(d)	M_2O_5			
63.	The s	stable oxidation st	ate of Tha	llium, a IIIA group	element is						
	(a)	+1	(b)	+3	(c)	-3	(d)	+5			
64.	Oxid	ation number of C	l in NOCl	O ₄ is							
	(a)	+7	(b)	–7	(c)	+5	(d)	-5			
65.	0.56	gm of gas occupie	es 280 cm ³	at NTP, then its m	olecular m	ass is					
	(a)	4.8	(b)	44.8	(c)	2	(d)	22.4			
66.	The r	number of signific	ant figures	s in 6.0023 are							
	(a)	5	(b)	4	(c)	3	(d)	1			
67.	An at	tom of element ha	s 2K, 8L a	and 3M electrons. T	hen that el	ement is placed in					
	(a)	I A group	(b)	II A group	(c)	III A groun	(d)	IV A group			

68. Give the name of the inert gas atom in which the total number of d-electrons is equal to the difference in numbers of total p and s-electrons (d) (a) He (b) Ne (c) Ar Kr 69. The acidic, basic and amphoteric oxides, respectively, are: (a) MgO, Cl₂O, Al₂O₃ (b) Cl₂O, CaO, P₄O₁₀ Na₂O, SO₃, Al₂O₃ N₂O₃, Li₂O, Al₂O₃ (c) (d) 70. The following data are available. % of Mg in Mgo and in MgCl₂ % of C in CO & CO₂ (i) (ii) % of Cr in K₂Cr₂O₇ and K₂CrO₄ % of Cu isotopes in Cu metal (iii) (iv) The law of multiple proportions may be illustrated by data. (a) i & ii (b) only ii (c) i, ii & iii (d) only iii 71. 2.76 g of silver carbonate on being strongly heated yield a residue weighing: 2.64 g (b) 2.48 g (c) 2.16 g (a) (d) 2.32 g 72. The standard reduction potentials of Cu²⁺/Cu and Cu²⁺/Cu⁺ are 0.337 and 0.153 V respectively. The standard electrode potentials of Cu⁺/Cu half cell is (a) 0.521 V (b) 0.184 V (c) 0.490 V (d) 0.827 V 73. One mole of acidified K₂Cr₂O₇ on reaction with excess KI will liberate....mole (s) of I₂ 7 (a) 6 (b) 1 (c) (d) 3

(a) 2.5 (b) 5.0 (c) 10.0

Sea Borgium

How many ml of 1 (M) H₂SO₄ is required to neutralise 10 ml of 1 (M) NaOH solution?

76. Diagonal relationship is shown by

Hassium

(a) B - S

74.

75.

(a)

(b) Li - Mg

Element with atomic number [Z=111] is named in the honour of

(b)

(c) Mg - Ca

(c)

Meitnerium

(d) S - Se

20.0

Rontgenium

(d)

(d)

77. H ₂ evolved at STP on complete reaction of 27 g of Aluminium with excess of aqueous NaO								OH would be		
	(a)	22.4	(b)	44.8	(c)	67.2	(d)	33.6 litres		
78.	The n	number of moles of	sodium o	oxide in 620 g of it is						
	(a)	1 mol	(b)	10 moles	(c)	18 moles	(d)	100 moles		
79.	How	many electrons and	protons	are present in the bal	anced ha	alf reaction $NO_2^- \rightarrow 1$	NO			
	(a)	1, 2	(b)	1, 1	(c)	2, 2	(d)	0, 1		
80.	Cryst	als of which pair are	e isomor	phous						
	(a)	ZnSO ₄ , SnSO ₄	(b)	MgSO ₄ , CaSO ₄	(c)	ZnSO ₄ , MgSO ₄	(d)	PbSO ₄ , NiSO ₄		
81.	Sodiu	ım forms Na+ and no	ot Na ²⁺ b	pecause:						
	(a)	sodium contains	only one	e electron in outermos	st shell					
	(b)	first ionization p	otential i	s small and the differ	ence in	first and second ioniz	ation po	tentials is large		
	(c)	radius of Na ²⁺ is	much sn	naller than of Na ⁺						
	(d)	None of these								
82.	Most	reactive meal amon	g the fol	llowing is:						
	(a)	K	(b)	Li	(c)	Na	(d)	Mg		
83.	Whic	h is more basic in cl	haracter'	?						
	(a)	RbOH	(b)	КОН	(c)	LiOH	(d)	NaOH		
84.	Sodiu	ım burns in dry air t	o give:							
	(a)	Na ₂ O	(b)	Na_2O_2	(c)	NaO_2	(d)	Na_3N		
85.	Whic	h of the following c	ompoun	ds on reaction with N	IaOH an	d H ₂ O ₂ gives yellow	colour?			
	(a)	$Zn(OH)_2$	(b)	$Cr(OH)_3$	(c)	$Al(OH)_3$	(d)	None of these		
86.	Amoi	ng the following, wh	nich has	minimum solubility i	in water:	?				
	(a)	KOH	(b)	CsOH	(c)	LiOH	(d)	RhOH		

87.	The pair of compounds which cannot exist together in solution is:								
	(a)	NaHCO ₃ and NaO	Н		(b)	Na ₂ CO ₃ and NaHC	O_3		
	(c)	Na ₂ CO ₃ and NaOI	Η		(d)	NaHCO ₃ and NaCl			
88.	Which	alkaline earth meta	l does n	ot impact the flame co	olour?				
	(a)	Sr	(b)	Be	(c)	Ra	(d)	Ca	
89.	Which	is used to remove N	N ₂ from	air?					
	(a)	Mg	(b)	P	(c)	H_2SO_4	(d)	CaCl ₂	
90.	Which	metal does not forn	n ionic l	nydride?					
	(a)	Ba	(b)	Mg	(c)	Ca	(d)	Sr	
91.	Hydro	gen after losing one	electron	n forms H ⁺ resembles	in this p	roperty with:			
	(a)	alkali metals			(b)	halogens			
	(c)	alkaline earths me	tals		(d)	transitional element	ES .		
92.	Moist	hydrogen cannot be	dried o	ver concentrated H ₂ SO	O ₄ becau	ise:			
	(a) it can catch fire					it is reduced by H ₂ SO ₄			
	(c)	a part of it is oxidi	zed by l	H_2SO_4	(d)	it decomposes H ₂ SO	O_4		
93.	Which	can adsorb large vo	olumes o	of hydrogen gas?					
	(a)	Colloidal solution	of palla	dium	(b)	Finely divided nick	el		
	(c)	Colloidal ferric hy	droxide		(d)	Finely divided platinum			
94.	The m	ost dangerous metho	od of pro	eparing hydrogen wo	ıld be by	the action of HCl an	d		
	(a)	Zn	(b)	Fe	(c)	K	(d)	Al	
95.	Hydro	gen gas is not libera	ted whe	n the following metal	s added	to dil. HCl:			
	(a)	Mg	(b)	Sn	(c)	Ag	(d)	Zn	
96.	Heavy	water reacts with A	l_4C_3 to 1	Form:					
	(a)	CD ₄ and Al(OH) ₃	(b)	CH ₄ and Al(OD) ₃	(c)	CD ₄ and Al(OD) ₃	(d)	None of these	

- 97. Acidified solution of chromic acid on treatment with H₂O₂ yields:
 - (a) $CrO_3 + H_2O + O_2$

(b) $Cr_2O_2 + H_2O + O_2$

(c) $CrO_5 + H_2O + K_2SO_4$

- (d) $H_2Cr_2O_7 + H_2O + O_2$
- 98. In which of the following reaction, H_2O_2 is acting as a reducing agent?
 - (a) $SO_2 + H_2O_2 \longrightarrow H_2SO_4$
- (b) $2KI + H_2O_2 \longrightarrow 2KOH + I_2$
- (c) $Ag_2O + H_2O_2 \longrightarrow 2Ag + H_2O + O_2$
- (d) $PbS + 4H_2O_2 \longrightarrow PbSO_4 + 4H_2O$
- 99. Maximum concentration of ortho-H₂ in ordinary hydrogen is:
 - (a) 75% ortho- $H_2 + 25\%$ para- H_2
- (b) 25% ortho- $H_2 + 75\%$ para- H_2
- (c) 50% ortho- $H_2 + 50\%$ para- H_2
- (d) 99% para- $H_2 + 1\%$ ortho- H_2
- 100. The hydrogen at the moment of its formation is called:
 - (a) atomic
- (b) ortho
- (c) para
- (d) nascent

ANKUR BATCH (SET A) BIOLOGY : REVISION TEST

Topic: Unit 6

101.	'Noth	ing lives forever, bu	ıt life coı	ntinues'. What do	oes it mean?							
	(a)	Older die but nev	w are pro	duced due to rep	production.							
	(b)	Nothing can prod	luce with	out death.								
	(c)	Death has nothing	g to do v	vith the continua	tion of life.							
	(d)	Parthenogenesis	is must f	or sexual reprod	uction.							
102.	Offse	ts are produced by										
	(a)	meiotic divisions			(b)	mitotic divisio	ons					
	(c)	parthenocarpy			(d)	parthenogenes	sis.					
103.	Whic	h one of the following	ng stater	ments is not corre	ect?							
	(a)	Offspring produc	ed by the	e asexual reprod	uction are call	led clone.						
	(b)	Microscopic, mo	tile, asex	tual reproductive	structures are	e called zoospore	es.					
	(c)	In potato, banana and ginger, the plantlets arise from the internodes present in the modified stem.										
	(d)	d) Water hyacinth, growing in the standing water, drains oxygen from water that leads to the death of fishes.										
104.	Which of the following pairs is not correctly matched?											
		Mode of reprodu	ction		Examp	ole						
	(a)	Binary fission			Sargas	ssum						
	(b)	Conidia			Penici	llium						
	(c)	Offset			Water	hyacinth						
	(d)	Rhizome			Banan	a						
105.	In gin	ger, vegetative prop	oagation	occurs through								
	(a)	bulbils	(b)	runners	(c)	rhizome	(d)	offsets.				

106.	Which	Which one of the following is correctly matched?										
	(a)	Onion-Bulb			(b)	Ginger-Sucker						
	(c)	Chlamydomona	ıs-Conidia	n	(d)	Yeast-Zoospores						
107.	Which	n one of the follow	ving pairs	is wrongly matched	d while the	e remaining three are	correct?					
	(a)	Penicillium - Co	onidia									
	(b)	Water hyacinth	- Runner									
	(c)	Bryophyllum - l	Leafbuds									
	(d)	Agave - Bulbils	3									
108.	The "e	eyes" of the potato	tuber are	•								
	(a)	root buds	(b)	flower buds	(c)	shoot buds	(d)	axillary buds.				
109.	Veget	ative propagation	in Pistia o	occurs by								
	(a)	stolon	(b)	offset	(c)	runner	(d)	sucker.				
110.	Veget	ative propagation	in mint o	ecurs by								
	(a)	offset	(b)	rhizome	(c)	sucker	(d)	runner.				
111.	Durin	g regeneration, mo	odification	n of an organ to oth	er organ is	s known as						
	(a)	morphogenesis			(b)	epimorphosis						
	(c)	morphallaxis			(d)	accretionary growt	h.					
112.	Veget	ative reproduction	of Agave	e occurs through								
	(a)	rhizome	(b)	stolon	(c)	bulbils	(d)	sucker.				
113.	For ur	nion between stock	k and scio	on in grafting which	one is the	first to occur?						
	(a)	Formation of ca	ıllus		(b)	Production of plass	modesm	ata				
	(c)	Differentiation	of new va	scular tissues	(d)	Regeneration of co	ortex and	l epidermis				
114.	In son	ne plants, the fema	ale gamete	e develops into emb	oryo witho	ut fertilisation. This p	henome	non is known as				
	(a)	parthenogenesis	S		(b)	autogamy						
	(c)	parthenocarpy			(d)	syngamy.						

115.	Which	of the following flo	owers or	aly once in its lifetime	e?			
	(a)	Bamboo species			(b)	Jackfruit		
	(c)	Mango			(d)	Papaya		
116.	Which	one of the followin	g gener	ates new genetic com	bination	s leading to variation	?	
	(a)	Vegetative reprod	uction		(b)	Parthenogenesis		
	(c)	Sexual reproduction	on		(d)	Nucellar polyembr	yony	
117.	Match	column I with colum	mn II ar	nd select the correct o	ption usi	ing the codes given b	elow.	
		Column I				Column II		
	A.	Pistils fused togeth	her		(i)	Gametogenesis		
	B.	Formation of game	etes		(ii)	Pistillate		
	C.	Hyphae of higher	ascomy	cetes	(iii)	Syncarpous		
	D.	Unisexual female	flower		(iv)	Dikaryotic		
	(a)	A-(iv), B-(iii), C-(i),D-(ii)	(b)	A-(ii), B-(i), C-(iv),	D-(iii)	
	(c)	A-(i),B-(ii),C-(iv)	,D-(iii)		(d)	A-(iii), B-(i), C-(iv)	,D-(ii)	
118.	Flower	rs are unisexual in						
	(a)	China rose	(b)	onion	(c)	pea	(d)	cucumber.
119.	Produc	et of sexual reproduc	ction ge	nerally generates				
	(a)	new genetic comb	ination	leading to variation	(b)	large biomass		
	(c)	longer viability of	seeds		(d)	prolonged dormand	ey.	
120.	Meiosi	s takes place in						
	(a)	gemmule	(b)	megaspore	(c)	meiocyte	(d)	conidia.
121.	Which	one of the followin	g is mo	noecious?				
	(a)	Marchantia	(b)	Cycas	(c)	Pinus	(d)	Date palm
122.	Which	one of the followin	g plants	s is monoecious?				
	(a)	Pinus	(b)	Cycas	(c)	Papaya	(d)	Marchantia

123.	Why is vivipary an undesirable character for annual crop plants?									
	(a)	It reduces the vig	our of th	e plant.						
	(b)	It adversely affec	ts the fe	rtility of the plant.						
	(c)	The seeds exhibit	long do	rmancy.						
	(d)	The seeds cannot	be store	d under normal condi	tions fo	r the next season.				
124.	In oog	gamy, fertilisation in	nvolves							
	(a)	a small non-motil	e female	e gamete and a large n	notile m	ale gamete				
	(b)	a large non-motil	e female	gamete and a small n	notile m	ale gamete				
	(c)	a large non-motil	e female	gamete and a small n	on-mot	ile male gamete				
	(d)	large motile fema	le game	te and a small non-mo	tile ma	le gamete.				
125.	The p	rocess of series of c	hanges f	rom larva to adult afte	er embr	yonic development is	called			
	(a)	regeneration	(b)	growth	(c)	metamorphosis	(d)	ageing.		
126. The plant parts which consist of two generations-one within the other										
	(1)	pollen grains insi	de the ar	nther						
	(2)	germinated poller	n grain v	vith two male gametes	3					
	(3)	seed inside the fro	uit							
	(4)	embryo sac inside	e the ovu	ıle						
	(a)	(1) only	(b)	(1), (2), and (3)	(c)	(3) and (4)	(d)	(1) and (4).		
127.	In wat	ter hyacinth and wat	ter lily, p	pollination takes place	by					
	(a)	insects or wind	(b)	water currents only	(c)	wind and water	(d)	insects and water.		
128.	Which	n is the most commo	on type o	of embryo sac in angio	osperms	?				
	(a)	Tetrasporic with	one mito	tic stage of divisions						
	(b)	Monosporic with	three se	quential mitotic divisi	ons					
	(c)	Monosporic with	two seq	uential mitotic divisio	ns					
	(d)	Bisporic with two	sequen	tial mitotic divisions						

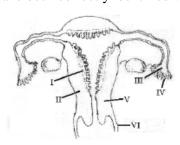
Learn	iing with	tne Speea of Mumbai	ana the 1	raaition of Kota									
129.	What	type of pollination	pe of pollination takes place in Vallisneria? Pollination occurs in submerged condition by water.										
	(a)	Pollination occu	ırs in sub	merged condition by	water.								
	(b)	Flowers emerge	above su	urface of water, and po	ollinatio	n occurs by insects.							
	(c)	Flowers emerge	above w	ater surface, and polle	en is car	ried by wind.							
	(d)	Male flowers are	e carried	by water currents to f	emale fl	owers at surface of	water.						
130.	In wh	ich one of the follo	owing, bo	oth autogamy and geit	onogam	y are prevented?							
	(a)	Wheat	(b)	Papaya	(c)	Castor	(d)	Maize					
131.	Poller	n grains can be stor	red for se	veral years in liquid r	itrogen	having a temperatu	re of						
	(a)	− 120° C	(b)	−80° C	(c)	– 196° C	(d)	− 160° C.					
132.	Whic	h of the following	has prove	ed helpful in preservir	ng poller	as fossils?							
	(a)	Pollenkitt	(b)	Cellulosic inline	(c)	Oil content	(d)	Sporopollenin					
133.	Wing	ed pollen grains ar	e present	in									
	(a)	mustard	(b)	Cycas	(c)	mango	(d)	Pinus.					
134.	Funct	ional megaspore ir	n an angi	osperm develops into	an								
	(a)	endosperm	(b)	embryo sac	(c)	embryo	(d)	ovule.					
135.	Attrac	ctants and rewards	are requi	red for									
	(a)	entomophily	(b)	hydrophily	(c)	cleistogamy	(d)	anemophily.					
136.	Flowe	ers which have sing	gle ovule	in the ovary and are p	packed in	nto inflorescence ar	e usually p	ollinated by					
	(a)	bee	(b)	wind	(c)	bat	(d)	water.					
137.	A dio	ecious flowering p	lant prev	ents both									
	(a)	autogamy and g	eitonoga	my	(b)	geitonogamy and	d xenogam	y					
	(c)	cleistogamy and	l xenogar	my	(d)	autogamy and xe	enogamy.						
138.	In ma	jority of angiosper	ms,										
	(a)	egg has a filifor	m appara	tus									
	(b)	there are numer	ous antip	odal cells									
	(c)	reduction division	on occurs	s in the megasnore mo	ther cell	ls.							

a small central cell is present in that embryo sac.

(d)

139.	Pollin	ation in water hya	cinth and	d water lily is brough	t about b	by the agency of				
	(a)	water	(b)	insects or wind	(c)	birds	(d)	bats.		
140.	The o	vule of an angiospe	erm is tec	hnically equivalent to	0					
	(a)	megasporangium	1		(b)	megasporophyll				
	(c)	megaspore moth	er cell		(d)	megaspore.				
141.	Which	one of the followi	ing stater	nents is not true?						
	(a)	Pollen grains of	many spe	ecies cause severe alle	ergies.					
	(b)	Stored pollen in	liquid nit	rogen can be used in	the crop	breeding programm	es.			
	(c)	Tapetum helps in	n the deh	iscence of anther.						
	(d)	Exine of pollen g	grains is 1	nade up of sporopoll	enin.					
142.	Which of the following statements is not correct?									
	(a)	Pollen germinati with those of the	-	pollen tube growth an	re regula	ated by chemical con	mponents	s of pollen interacting		
	(b)	Some reptiles ha	ve also b	een reported as pollin	nators in	some plant species.				
	(c)	Pollen grains of same species gro	• •	•	on the s	stigma of a flower, b	out only o	one pollen tube of the		
	(d)	Insects that cons	ume poll	en or nectar without b	oringing	about pollination are	e called p	ollen/ nectar robbers.		
143.	Proxir	nal end of the filan	nent of st	amen is attached to the	he					
	(a)	placenta	(b)	thalamus or petal	(c)	anther	(d)	connective.		
144.	Filifor	m apparatus is cha	racteristi	c feature of						
	(a)	aleurone cell	(b)	synergids	(c)	generative cell	(d)	nucellar embryo.		
145.	In ang	iosperms, microspe	orogenes	is and megasporo -ge	enesis					
	(a)	involve meiosis			(b)	occur in ovule				
	(c)	occur in anther			(d)	form gametes with	hout furth	ner divisions.		
146.	Male g	gametophyte in ang	giosperm	s produces						
	(a)	single sperm and	l two veg	etative cells	(b)	three sperms				
	(c)	two sperms and	a vegetat	ive cell	(d)	single sperm and	a vegetati	ive cell.		

147.	Wh	ich of the following ar	the following are the important floral rewards to the animal pollinators?									
	(a)	Floral fragrance a	nd calci	um crystals	(b)	Protein pellicle an	d stigmat	ic exudates				
	(c)	Colour and large	size of f	lower	(d)	Nectar and pollen	grains					
148.	Wh	ich one of the followir	ng may i	require pollinators, bu	ıt is gen	etically similar to aut	ogamy?					
	(a)	Apogamy	(b)	Cleistogamy	(c)	Geitonogamy	(d)	Xenogamy				
149.	Wh	ich one of the followir	ng stater	nents is not true?								
	(a)	The flowers pollin	nated by	flies and bats secrete	e foul o	lour to attract them.						
	(b)	Honey is made by	bees by	digesting pollen col	llected f	rom flowers.						
	(c)	Pollen grains are	rich in n	utrients and they are	used in	the form of tablets ar	nd syrups.					
	(d)	Pollen grains of so	ome pla	nts cause severe aller	gies and	l bronchial afflictions	s in some	people.				
150.	The	hilum is a scar on the										
	(a)	fruit, where style	was pre	sent	(b)	seed, where micro	pyle was	present				
	(c)	seed, where funic	le was a	ttached	(d)	fruit, where it was	attached	to pedicel.				
151.	The	Leydig cells found in	the hun	nan body are the secr	etory so	urce of						
	(a)	Progesterone			(b)	intestinal mucus						
	(c)	glucagon			(d)	androgens						
152.	The	e testes in humans are	situated	outside the abdomin	al cavit	y insides pouch calle	d scrotum	n. The purpose se	rved			
	(a)	maintaining the so	crotal te	mperature lower than	the inte	ernal body temperatur	re					
	(b)	escaping any poss	sible con	mpression by the visc	eral org	ans						
	(c)	providing more sp	oace for	the growth of epidid	ymis							
	(d)	providing a secon	dary sex	xual feature for exhib	iting the	e male sex						
153.	Vas	a efferentia are the du	ctules le	ading from								
	(a)	testicular lobules to r	ete testi	S	(b)	rete testis to vas defer	rens					
	(c)	vas deferens to epidio	lymis		(d)	epididymis to urethra						


- 154. Seminal plasma in humans is rich in
 - (a) fructose and calcium but has no enzymes
 - (b) glucose and certain enzymes but has no calcium
 - (c) fructose and certain enzymes but poor in calcium
 - (d) fructose, calcium and certain enzymes
- 155. Grey crescent is the area
 - (a) at the point of entry of sperm into ovum
 - (b) just opposite to the site of entry of sperm into ovum
 - (c) at the animal pole
 - (d) at the vegetal pole
- 156. Capacitation occurs in:
 - (a) Epididymis

(b) Vas deferens

(c) Female reproductive tract

- (d) Rete testis
- 157. Which of the following layers in an antral follicle is acellular?
 - (a) Theca interna
- (b) Stroma

- Zona pellucida
- (d) Granulosa
- 158. The figure given below depicts a diagrammatic sectional view of the female reproductive system of humans. Which one set of three parts out of I-VI have been correctly identified?

(c)

- (a) (II) Endometrium(III) Infundibulum, (IV) Fimbriae
- (b) (III) Infundibulum, (IV) Fimbriae, (V) Cervix,
- (c) (IV) Oviducal funnel, (V) Uterus, (VI) Cervix
- (d) (I) Perimetrium, (II) Myometrium, (111) Fallopian tube
- 159. Fertilization in humans is practically feasible only if
 - (a) the sperms are transported into vagina just after the release of ovum in fallopian tube
 - (b) the ovum and sperms are transported simultaneously to ampullary isthmic junction of the fallopian tube

	(c)	the ovum and s	perms are	transported simulta	neously to	ampullary - isthmi	c junction	of the cervix			
	(d)	the sperms are	transporte	d into cervix within	48 hrs of	release of ovum in	uterus				
160.	Which	of the following	cells duri	ng gameto-genesis	is normally	dipoid?					
	(a)	Spermatid			(b)	Spermatogonia					
	(c)	Secondary pola	r body		(d)	Primary polar bo	dy				
161.	In hum	nan females, meio	osis-II is n	ot complete until?							
	(a)	fertilization			(b)	uterine implantat	tion				
	(c)	birth			(d)	puberty					
162.	Menst	rual flow occurs o	due to lack	c of :							
	(a)	FSH	(b)	Oxytocin	(c)	Vasopressin	(d)	Progesterone			
163.	Which	of the following	best illust	rates FEEDBACK	in develop	ment?					
	(a)	As tissue (X) de	evelops, it	secretes something	that slows	s down the growth of	of tissue (Y)			
	(b)	Tissue (X) secre	etes RNA	which changes the	developme	ent of tissue (Y)					
	(c)	As tissue (X) de	evelops, it	secretes enzymes t	hat inhibit	the development of	f tissue (Y)			
	(d)	As tissue (X) de	evelops, it	secretes something	that induc	es tissue (Y) to dev	velop				
164.	Which	one of the follow	ving stater	ments is false in resp	pect of via	bility of mammalia	n sperm?				
	(a)	Sperm is viable	for only u	up to 24 hours.							
	(b)	Survival of spen	rm depend	ls on the pH of the	medium an	d is more active in	alkaline n	nedium.			
	(c)	Viability of spe	rm is dete	rmined by its motil	ity.						
	(d)	Sperms must be	concentr	ated in a thick suspe	ension.						
165.	The se	cretory phase in t	the human	menstrual cycle is	also called	l					
	(a)	luteal phase and	d lasts for	about 6 days	(b)	follicular phase lasting for about 6 days					
	(c)	luteal phase and	d lasts for	about 13 days	(d)	follicular phase a	and lasts fo	or about 13 days.			
166.		which day in a lly occurs?	normal h	uman menstrual cy	cle does ra	apid secretion of I	LH (Popul	arly called LH-surge)			
	(a)	$14^{th} day$ (b) $20^{th} day$ (c) $5^{th} day$ (d) $11^{th} day$									
		(0) 20 (0)									

(a)

secondary spermatocyte

Learn	ing with	the Speed of Mumbai and the Tradition of Kota		
167.	Whic	h one of the following statements about huma	nn sperm is c	correct?
	(a)	Acrosome has a conical pointed structufertilisation	ure used fo	r piercing and penetrating the egg, resulting
	(b)	The sperm lysins in the acrosome dissolve	the egg env	elope facilitating fertilization
	(c)	Acrosome serves as a sensory structure lea	ding the spe	rm towards the ovum
	(d)	Acrosome serves no particular function		
168.	The c	correct sequence of spermatogenetic stages lea	ading to the	formation of sperms in a mature human testes is:
	(a)	spermatogonia - spermatocyte - spermatid	- sperms	
	(b)	spermatid - spermatocyte - spermatogonia	- sperms	
	(c)	spermatogonia - spermatid - spermatocyte	- sperms	
	(d)	spermatocyte - spermatogonia - spermatid	- sperms	
169.	In hu	mans, at the end of the first meiotic division,	the male ger	m cells differentiate into the
	(a)	primary spermatocytes	(b)	secondary spermatocytes
	(c)	spermatids	(d)	spermatozonia
170.	In the	e human female, menstruation can be deferred	by the adm	inistration of
	(a)	combination of FSH and LH	(b)	combination of estrogen and progesterone
	(c)	FSH only	(d)	LH only
171.	If ma	mmalian ovum fails to get fertilized, which or	ne of the fol	lowing is unlikely?
	(a)	Corpus luteum will disintegrate	(b)	Progesterone secretion rapidly declines
	(c)	Estrogen secretion further decreases	(d)	Primary follicle starts developing
172.	The g	growth of corpus luteum is initiated by		
	(a)	Human chorionic gonadotropin	(b)	Follicle stimulating hormone
	(c)	Luteinizing hormone	(d)	Prolactin
173.	Fertil	izins are emitted by		
	(a)	immature eggs	(b)	mature eggs
	(c)	sperms	(d)	polar bodies
174.	At the	e end of first meiotic division, male sperm dif	ferentiates i	nto

primary spermatocyte

(b)

in

	(c)	spermatogonium		,	(d)	spermatid				
175.	Acroso	me reaction in speri	m is trig	gered by						
	(a)	capacitation	(b)	release of lysine	(c)	influx of Na ⁺	(d)	release of fertilizin		
176.	Middle	piece of mammalia	ın sperm	possesses						
	(a)	mitochondria and	centriole	;	(b)	mitochondria only				
	(c)	centriole only			(d)	nucleus and mitocho	ondria			
177.	Sperm	and egg nuclei fuse	due to							
	(a)	base pairing of the	ir DNA	and RNA	(b)	formation of hydrog	en bond	s		
	(c)	mutual attraction			(d)	attraction of their pr	otoplast	S		
178.	Egg is l	liberated from ovary	y in							
	(a)	secondary oocyte s	stage		(b)	primary oocyte stage				
	(c)	oogonial stage			(d)	mature ovum stage				
179.	Which	one of the following	g is not t	he function of placen	ıta? It:					
	(a)	secretes estrogen								
	(b)	facilitates removal	of carbo	on dioxide and waste	material	from embryo.				
	(c)	secretes oxytocin d	during pa	arturition						
	(d)	facilitates supply o	of oxygen	n and nutrients to em	byo					
180.	Signals	for parturition orig	inate fro	om:						
	(a)	Both placenta as w	ell as fu	lly developed foetus	(b)	Oxytocin released fr	rom mate	ernal pituitary		
	(c)	Placenta only			(d)	Fully developed foe	tus only			
181.	In vitro	fertilisation is a tec	chnique 1	that involves transfer	of which	n one of the following	g into the	e fallopian tube?		
	(a)	Embryo only, upto	8 cell s	tage	(b)	Either zygote or early embryo upto 8 cell stage				
	(c)	Embryo of 32 cell	stage		(d)	Zygote only				
182.	The first		e foetus	and appearance of ha	ir on its	head are usually obse	erved du	ring which month of		
	(a)	Fourth month	(b)	Fifth month	(c)	Sixth month	(d)	Third month		

<i>Learni</i> 183.		ejection reflex in h						
	(a)	release oxytocin f	rom pitu	itary	(b)	fully developed foe	etus and	placenta
	(c)	differentiation of	mammai	y glands	(d)	pressure exerted by	amniot	ic fluid
184.	Which	n extra-embryonic m	embran	e in humans prevents	desiccat	ion of the embryo ins	side the	uterus?
	(a)	Chorion	(b)	Allantois	(c)	Yolk sac	(d)	Amnion
185.	Cleava	age in mammalian e	gg is					
	(a)	superficial merobl	lastic		(b)	discoidal meroblas	tic	
	(c)	unequal holoblast	ic		(d)	equal holoblastic		
186.	Gonad	ls develop from emb	oryonic					
	(a)	ectoderm			(b)	endoderm		
	(c)	mesoderm			(d)	both mesoderm and	l endode	erm
187.	The fu	unction of copper ion	ns in cop	oper releasing lUD's is	s:			
	(a)	They inhibit game	etogenes	is				
	(b)	They make uterus	unsuita	ble for implantation				
	(c)	They inhibit ovula	ation					
	(d)	They suppress spe	erm moti	lity and fertilising ca	pacity of	f sperms		
188.	Which	of the following ap	proache	s does not give the de	efined ac	etion of contraceptive	?	
	(a)	Barrier methods p	revent f	ertilization				
	(b)	Intra uterine Incre sperms	ease pha	gocytosis devices of	sperms,	suppress sperm moti	lity and	fertilizing capacity of
	(c)	Hormonal Preven	t/retard	entry contraceptives of	of sperma	s, prevent ovulation a	and fertil	lization
	(d)	Vasectomy Preven	nts speri	natogenesis				
189.	Tubec	tomy is a method of	f steriliza	ntion in which:				
	(a)	small part of the f	allopian	tube is removed or ti	ed up.			
	(b)	ovaries are remov	ed surgi	cally				
	(c)	small part of vas o	deferens	is removed or tied up).			
	(d)	uterus is removed	surgical	ly.				

190.	Which	h of the following cannot be detected in a develo	ping foet	tus by amniocentesis?
	(a)	Sex of the foetus	(b)	Down syndrome
	(c)	Jaundice	(d)	Klinefelter syndrome
191.	One o	of the following is not a method of contraception	- which	one?
	(a)	Tubectomy		
	(b)	Condoms		
	(c)	Pills of a combination of oxytocin and vasopre	essin	
	(d)	Lippes loop		
192.	Which	h one of the following is the most widely accepte	ed method	d of contraception in India, as at present ?
	(a)	Cervical caps	(b)	Tubectomy
	(c)	Diaphragms	(d)	ILJDs. (Intra uterine devices)
193.		below are four methods (A-D) and their modet matching from the four options that follow:	les of ac	ction (a-d) in achieving contraception. Select their
		Method		Mode of Action
	A.	The pill	(a)	Prevents sperms reaching cervix
	B.	Condom	(b)	Prevents implantation
	C.	Vasectomy	(c)	Prevents ovulation
	D.	Copper T	(d)	Semen contains no sperms
	Match	ning:		
	(a)	A-(c), B-(a), C-(d), D-(b)	(b)	A-(d), B-(a), C-(b), D-(c)
	(c)	A-(c), B-(d), C-(a), D-(b)	(d)	A-(b), B-(c), C-(a), D-(d)
194.		se of a couple where the male is having a versation?	ry low s	perm count, which technique will be suitable for
	(a)	Gamete intracytoplasmic fallopian transfer	(b)	Artificial Insemination
	(c)	Intracytoplasmic sperm injection	(d)	Intrauterine transfer
195.	A chi	ldless couple can be assisted to have a child through	ugh a tec	hnique called GIFT. The full form of this technique
	(a)	Gamete intra fallopian transfer	(b)	Gamete internal fertilization and transfer
	(c)	Germ cell internal fallopian transfer	(d)	Gemete inseminated fallopian transfer

196.	Artific	ial insemination me	an:					
	(a)	Transfer of sperms	s of husb	oand to a test tube cor	ntaining	ova		
	(b)	Artificial introduc	tion of s	perms of a healthy do	onor into	the vagina		
	(c)	Introduction of spe	erms of a	a healthy donor direc	tly into t	he ovary		
	(d)	Transfer of sperms	s of a he	althy donor to a test t	ube cont	taining ova		
197.	The sta	age transferred into	the uteru	s after induced fertili	ization o	f ova in the laborator	y is	
	(a)	Zygote			(b)	Embryo at 4 blastor	mere sta	ge
	(c)	Embryo at 2 blasto	omere st	age	(d)	Morula		
198.	Medica	al Termination of Pr	egnancy	(MTP) is considered	d safe up	to how many weeks	of pregr	nancy?
	(a)	Eight weeks	(b)	Twelve weeks	(c)	Eighteen weeks	(d)	Six weeks
199.	Consid	er the statements gi	ven belo	w regarding contrace	eption an	d answer as directed	thereaft	er:
	(i)	Medical Terminati	ion of Pı	regnancy (MTP) duri	ng first t	rimester is generally	safe	
	(ii)	Generally chances	of conc	eption are nil until m	other bro	east-feeds the infant u	apto two	years
	(iii)	Intrauterine device one week after coi		11	contrac	eptives (iv) Contrace	ption pi	lls may be taken upto
	Which	two of the above st	atement	s are correct?				
	(a)	ii and iii	(b)	iii and iv	(c)	i and iii	(d)	i and ii
200.	Test tu	be baby is one who						
	(a)	is born out of artif	icial inse	emination				
	(b)	has undergone dev	/elopme	nt in a test tube				
	(c)	is born out of the t	echniqu	e of fertilization in vi	tro			
	(d)	has been develope	d withou	at fertilization				

Max Marks: 720 Date: 06.11.2022

ANKUR BATCH PHYSICS: REVISION TEST – 1 (SET A) ANSWER KEY Topic: Ray Optics + Circular Motion + Gravitation

1.	(c)	2.	(b)	3.	(b)	4.	(d)	5.	(c)
6.	(c)	7.	(d)	8.	(a)	9.	(a)	10.	(a)
11.	(c)	12.	(b)	13.	(d)	14.	(c)	15.	(c)
16.	(b)	17.	(d)	18.	(c)	19.	(d)	20.	(a)
21.	(c)	22.	(d)	23.	(b)	24.	(c)	25.	(a)
26.	(a)	27.	(b)	28.	(d)	29.	(a)	30.	(a)
31.	(c)	32.	(b)	33.	(d)	34.	(d)	35.	(a)
36.	(d)	37.	(c)	38.	(a)	39.	(d)	40.	(a)
41.	(c)	42.	(b)	43.	(b)	44.	(a)	45.	(d)
46.	(d)	47.	(d)	48.	(c)	49.	(a)	50.	(a)

Date: 06.11.2022

ANKUR BATCH CHEMISTRY: REVISION TEST-1 (SET A) ANSWER KEY Topic: Mole Concept + Redox Reaction + Periodic Properties + S Block + Hydrogen

51.	(b)	52.	(b)	53.	(c)	54.	(c)	55.	(d)
56.	(a)	57.	(a)	58.	(b)	59.	(c)	60.	(a)
61.	(d)	62.	(b)	63.	(a)	64.	(a)	65.	(b)
66.	(a)	67.	(c)	68.	(d)	69.	(d)	70.	(b)
71.	(c)	72.	(a)	73.	(d)	74.	(d)	75.	(b)
76.	(b)	77.	(d)	78.	(b)	79.	(a)	80.	(c)
81.	(b)	82.	(a)	83.	(a)	84.	(b)	85.	(b)
86.	(c)	87.	(a)	88.	(b)	89.	(a)	90.	(b)
91.	(a)	92.	(c)	93.	(a)	94.	(c)	95.	(c)
96.	(c)	97.	(c)	98.	(c)	99.	(a)	100.	(d)

Date: 06.11.2022

ANKUR BATCH BIOLOGY : REVISION TEST (SET A) ANSWER KEY Topic: Unit 6

101.	(a)	102.	(b)	103.	(c)	104.	(a)	105.	(c)
106.	(a)	107.	(b)	108.	(d)	109.	(b)	110.	(c)
111.	(b)	112.	(c)	113.	(a)	114.	(a)	115.	(a)
116.	(c)	117.	(d)	118.	(d)	119.	(a)	120.	(c)
121.	(c)	122.	(a)	123.	(d)	124.	(b)	125.	(c)
126.	(d)	127.	(a)	128.	(b)	129.	(d)	130.	(b)
131.	(c)	132.	(d)	133.	(d)	134.	(b)	135.	(a)
136.	(b)	137.	(a)	138.	(c)	139.	(b)	140.	(a)
141.	(c)	142.	(c)	143.	(b)	144.	(b)	145.	(a)
146.	(c)	147.	(d)	148.	(c)	149.	(b)	150.	(c)
151.	(d)	152.	(a)	153.	(b)	154.	(d)	155.	(b)
156.	(c)	157.	(c)	158.	(b)	159.	(b)	160.	(b)
161.	(a)	162.	(d)	163.	(d)	164.	(d)	165.	(c)
166.	(a)	167.	(b)	168.	(a)	169.	(b)	170.	(b)
171.	(c)	172.	(c)	173.	(b)	174.	(a)	175.	(d)
176.	(a)	177.	(d)	178.	(a)	179.	(c)	180.	(a)
181.	(a)	182.	(b)	183.	(b)	184.	(d)	185.	(c)
186.	(c)	187.	(d)	188.	(d)	189.	(a)	190.	(c)
191.	(c)	192.	(d)	193.	(a)	194.	(b)	195.	(b)
196.	(b)	197.	(d)	198.	(b)	199.	(c)	200.	(c)